Organic photolysis reactions in tropospheric aerosols: effect on secondary organic aerosol formation and lifetime
نویسندگان
چکیده
This study presents the first modeling estimates of the potential effect of gasand particle-phase organic photolysis reactions on the formation and lifetime of secondary organic aerosols (SOAs). Typically only photolysis of smaller organic molecules (e.g., formaldehyde) for which explicit data exist is included in chemistry–climate models. Here, we specifically examine the photolysis of larger molecules that actively partition between the gas and particle phases. The chemical mechanism generator GECKO-A is used to explicitly model SOA formation from α-pinene, toluene, and C12 and C16 n-alkane reactions with OH at low and high NOx . Simulations are conducted for typical midlatitude conditions and a solar zenith angle of 45 (permanent daylight). The results show that after 4 days of chemical aging under those conditions (equivalent to 8 days in the summer mid-latitudes), gas-phase photolysis leads to a moderate decrease in SOA yields, i.e., ∼ 15 % (low NOx) to ∼ 45 % (high NOx) for α-pinene,∼ 15 % for toluene,∼ 25 % for C12 n-alkane, and ∼ 10 % for C16 n-alkane. The small effect of gas-phase photolysis on low-volatility n-alkanes such as C16 n-alkane is due to the rapid partitioning of early-generation products to the particle phase, where they are protected from gas-phase photolysis. Minor changes are found in the volatility distribution of organic products and in oxygen to carbon ratios. The decrease in SOA mass is increasingly more important after a day of chemical processing, suggesting that most laboratory experiments are likely too short to quantify the effect of gas-phase photolysis on SOA yields. Our results also suggest that many molecules containing chromophores are preferentially partitioned into the particle phase before they can be photolyzed in the gas phase. Given the growing experimental evidence that these molecules can undergo in-particle photolysis, we performed sensitivity simulations using an empirically estimated SOA photolysis rate of JSOA = 4× 10 −4 JNO2 . Modeling results indicate that this photolytic loss rate would decrease SOA mass by 40–60 % for most species after 10 days of equivalent atmospheric aging at mid-latitudes in the summer. It should be noted that in our simulations we do not consider in-particle or aqueous-phase reactions which could modify the chemical composition of the particle and thus the quantity of photolabile species. The atmospheric implications of our results are significant for both the SOA global distribution and lifetime. GEOS-Chem global model results suggest that particle-phase photolytic reactions could be an important loss process for SOA in the atmosphere, removing aerosols from the troposphere on timescales of less than 7 days that are comparable to wet deposition.
منابع مشابه
Interactions between tropospheric chemistry and aerosols in a unified general circulation model
[1] A unified tropospheric chemistry-aerosol model has been developed within the Goddard Institute for Space Studies general circulation model (GCM). The model includes a detailed simulation of tropospheric ozone-NOx-hydrocarbon chemistry as well as aerosols and aerosol precursors. Predicted aerosol species include sulfate, nitrate, ammonium, black carbon, primary organic carbon, and secondary ...
متن کاملAssessment of the global impact of aerosols on tropospheric oxidants
[1] We present here a fully coupled global aerosol and chemistry model for the troposphere. The model is used to assess the interactions between aerosols and chemical oxidants in the troposphere, including (1) the conversion from gas-phase oxidants into the condensed phase during the formation of aerosols, (2) the heterogeneous reactions occurring on the surface of aerosols, and (3) the effect ...
متن کاملEffects of aerosols on tropospheric photolysis rates in clear and cloudy atmospheres
The effect of aerosols on 14 tropospheric photolysis reactions is examined under noncloudy and cloudy sky conditions by using a detailed one-dimensional radiative transfer model. Pure (NH4)2SO4, pure soot, and internal and external mixtures of the two aerosols, as well as mineral dust aerosol, are considered. Nonabsorbing aerosol generally enhances photolysis rates above and in the upper part o...
متن کاملKinetics of the reactions of isoprene-derived epoxides in model tropospheric aerosol solutions.
Polyols and organic sulfates have recently been identified in the secondary organic aerosol (SOA) formed in the photooxidation of isoprene in both the laboratory and under ambient atmospheric conditions. Nuclear magnetic resonance methods were used to monitor the bulk reaction kinetics of acid-catalyzed hydrolysis reactions for isoprene- and 1,3-butadiene-derived epoxides in order to determine ...
متن کامل